寻找地外理性生命之通俗的AI:第四十四章,数学语言(2/2)
在大约三十年之前,计算机科学还是数学的一个分支。现在,显然有很多人已经忽略了计算机科学与数学的关系。唯一认为与数学有关的,就是计算机的算法,算法,是计算机程序通过数学语言实现目的的方法。
数学是一种思维的方式,任何问题但凡有其它的表达方式,都可以用数学语言来表达。甚至有人把数学知识的积累,上升到数学修养的程度。
虽然,数学只是一种表达的工具,从现实世界抽象而得的理论,但是在理论抽象时太深入现实世界,对现实世界的迷惑都会具体反应到数学表达中。
举一个具体的例子。
对于人们熟知的微分、积分的问题,饱含一种自然的巧妙。如果改变一个角度去理解微积分的几何含义,并引申至物理含义,再反观其数学式,对驾驭这个工具的技巧或更有帮助。
在一条平面曲线中,任何一个点都可以作出一条切线,在微积分中又叫导数,切线在几何意义上是这一个点的趋势方向,在物理中是运动方向。一个点是没有长度的,所以这个点的座标投影区域没有面积。可如果要让这个面积存在,那么这个点就必须要有长度。这就有一个疑惑,从一条线中可以作出无数个点,但是点却没有长度,也就是说点不能构成一条线。但是,只要对这个点进行表达,一定具有空间的概念。因为,如何让没有维度的点存在于三维空间之中?
曲线中的点到底要不要占长度,一旦拥有长度就失去方向(导数),一旦拥有方向就失去长度(数量);这和海森堡量子思维的测不全定律何其相似!一个可以无穷小的点,其物理含义是什么?在微分中,一条线可以无限小等分吗?最终是连续的,还是一段一段的?这和普朗克的量子思想何其相似!
在一维空间只有一条直线,尝试用这种思维由现实到数学看看。从现实中一维只能抽象出一段线作为一种存在,一个点是很特殊的一段线。这个特殊就是信息表述与现实之间的抽象。
同理,一条直线也是一条特殊的曲线,这很好理解,在纸上画一条直线,将纸侧过来,目光顺着直线的方向又是一个点。只要这条线有任何弯曲,投影就会有长度,侧过来的过程就是让二维失去一个维度的过程。一条直线相对于曲线的特殊,这个特殊就是信息表述与现实之间的抽象。
再同理,再增加一个维度,一个平面相对于一个三维空间,也是一种特殊的曲面,这个特殊就是信息表述与现实之间的抽象。
再再同理,一个“时—空”四维现实,有时间的三维运动空间,静止就是这个时空中的一种特殊,这个特殊就是信息表述与现实之间的抽象。
没有人能够在一个运动的时空世界中找到这种特殊,这些想象出来的点、直线、平面、静止实际上都是不存在的。这些本身就是一种思想实验的结论。如果用这种理论去推导理论,必然陷入一种悖论。所幸,有另外一种思维的存在——极限思维。可以无限的接近,却永不能至。
时间和三维空间中的维度是对等的吗?可以像三维之间那样互相失换吗?
好吧,我们试一下,实际上是可以的。只要有时间,就一定有运动,只要有运动,就可以多出一个维度。四维时空失去任何一个维度与静止并没有什么两样。
那么,下一个维度是什么?估计仍然会满足维度之间互相失换的条件,那么,即使有人把这个第五维度当作是一种空间的增加,也不算错。但是很难理解和表述,明显陷入了一种纯粹的理论推导理论的过程。
空间是运动的,运动的发展方向是熵,而信息是熵能量之中的存在。
这是第五个维度吗?其实,维度还是一种数学思维之下的推导,用理论推导理论的产物。
现实很神秘,数学也很精深,不敢多说!
:。:
[八一中文网 请记住www.81new.com 手机版访问 m.81new.com 绿色无弹窗]